Optimal design problems with fractional diffusions
نویسندگان
چکیده
In this article we study optimization problems ruled by α-fractional diffusion operators with volume constrains. By means of penalization techniques we prove existence of solutions. We also show that every solution is locally of class C0,α (optimal regularity), and that the free boundary is a C1,α surface, up to a Hn−1-negligible set.
منابع مشابه
New operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملA spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems
In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...
متن کاملA Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems
In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...
متن کاملSolution of Fractional Optimal Control Problems with Noise Function Using the Bernstein Functions
This paper presents a numerical solution of a class of fractional optimal control problems (FOCPs) in a bounded domain having a noise function by the spectral Ritz method. The Bernstein polynomials with the fractional operational matrix are applied to approximate the unknown functions. By substituting these estimated functions into the cost functional, an unconstrained nonlinear optimizat...
متن کاملA New Modification of Legendre-Gauss Collocation Method for Solving a Class of Fractional Optimal Control Problems
In this paper, the optimal conditions for fractional optimal control problems (FOCPs) were derived in which the fractional differential operators defined in terms of Caputo sense and reduces this problem to a system of fractional differential equations (FDEs) that is called twopoint boundary value (TPBV) problem. An approximate solution of this problem is constructed by using the Legendre-Gauss...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. London Math. Society
دوره 92 شماره
صفحات -
تاریخ انتشار 2015